طراحی مدل تخصیص نیروی پشتیبانی به دریافت کنندگان خدمات پس از فروش در سیستم های یکپارچه (مطالعه موردی: شرکت چارگون)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد مهندسی صنایع گرایش لجستیک و زنجیره تأمین، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

2 استادیار گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

در دنیای رقابتی امروز، استفاده از سیستم­های یکپارچه یکی از نیاز­های اساسی سازمان­ها است. دغدغه اصلی مدیرانی که به سازمان­ها خدمتی در این راستا ارائه می­دهند، شناسایی مشتریان وفادار جهت ایجاد روابط طولانی­مدت با مشتریان، در راستای سودآوری سازمان است. هدف اصلی در این پژوهش اختصاص نیروی پشتیبانی به تماس‌ها و درخواست‌های مشتریان به نحوی است که حداکثر رضایت‌مندی مشتریان حاصل گردد. لذا پس از جمع‌آوری داده‌های مشتریان شرکت چارگون و شناسایی و تحلیل رفتار مشتریان، به کمک الگوریتم­های درخت تصمیم اعم از جنگل تصادفی، درخت تصادفی، C5، ID3، Chaid و Gradient Boosted Trees و بر مبنای معیار دقت، خطای طبقه­بندی، فراخوانی و صحت هر درخت که با استفاده از قابلیت­های نرم­افزار Rapid Miner به‌دست‌آمده بود، درخت‌هایی استخراج شد. سپس بر مبنای میانگین معیارهای ارزیابی کیفیت و معیار دقت بیشتر از %67، معیار خطای طبقه­بندی کمتر 27%، معیار فراخوانی بیشتر از 62% و معیار صحت بیشتر از 66%، درخت­های برتر به دست آمد و قواعد و قوانینی از این درخت­های برتر مورد تحلیل و ارزیابی قرار گرفت. درنهایت، قواعد استخراج‌شده با نظر خبرگان رتبه‌بندی شدند. بررسی نتایج حاصل از پژوهش نشان می­دهد که قواعد و قوانین استخراج‌شده، معتبر و قابل پیاده‌سازی در سازمان است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing the Backup Unit Allocation Model for Customers in the Post-Sale Services By Integrated System (Case Study: Chargoon Company)

نویسندگان [English]

  • Sharareh Ebrahimzadeh 1
  • Moham Vahid Sebt 2
  • Hamed Davari-Ardakani 2
1 MSc. Student of Industrial engineering, Kharazmi University of Tehran, Iran
2 Assistant Prof., Kharazmi University of Tehran, Iran
چکیده [English]

In today's competitive world, integrated systems constitute an essential need in organizations. Managers providing such services are mainly concerned about identifying loyal customers and establishing long-term relations and a sustainable profitability. This study aimed to assign support forces to answer customer calls and requests in order to gain their utmost satisfaction. First, research data was collected from customers of Chargoon Co. in Iran, and the customer behavior was identified and analyzed. Then, using decision tree algorithms such as: random forest, gradient boosted trees, random tree, CHAID, C5, and ID3, a number of trees were extracted based on accuracy, classification error, weighted mean recall, and weighted mean precision criteria using Rapid Miner features. Next, the best trees were identified based on mean of quality assessment and accuracy of over 67%, classification error of under 27%, weighted mean recall of over 62%, and weighted mean precision of over 66%. Then, rules from these trees were extracted and analyzed. Finally, the extracted rules were examined and ranked based on expert views. The results indicated that the extracted rules are reliable and can be implemented in the organization.

کلیدواژه‌ها [English]

  • Backup Unit
  • customer loyalty
  • Data mining
  • decision tree
  • Integrated Systems
شهرابی، جمال و اسماعیل هداوندی. 1391. داده­کاوی در صنعت بانکداری. تهران: دانشگاه صنعتی امیرکبیر،  انتشارات جهاد دانشگاهی.

Abbasimehr, H., M. Setak, and M. Tarokh. 2014. A Comparative Assessment of the Performance of Ensemble Learning in Customer Churn Prediction. The International Arab Journal of Information Technology 11 (6): 599-606.

Abbasimehr, H., M. Setak, M. Tarokh, and J. A. Neuro. 2011. Fuzzy Classifier for Customer Churn Prediction. International Journal of Computer Applications 19 (8): 35-41.

Afolabi, I., O. Olufunke, and W. Rowland. 2016. A Systematic Review of Consumer Behaviour Prediction Studies. Covenant Journal of Business & Social Sciences 7 (1): 41-60.

Banerjee S., and S. Pawar, 2013. Predicting Consumer Purchase Intention: A Discriminant Analysis Approach, NMIMS Management Review 23: 113-129.

Barrios, E. B., and J. R. G. Lansangan, 2012. Forecasting Customer Lifetime Value: A Statistical Approach. Philippine Management Review 19: 23-34.

Baumann C., S. Burton, G. Elliott, and H. M. Kehr. 2006. Prediction of attitude and behavioral intentions in retail banking. International Journal of Bank Marketing 25 (2): 102-116.

Breault, J. L., C. R. Goodall, and P.J. Fos. 2002. Data mining a diabetic data warehouse. Artificial intelligence in medicine 26 (1-2): 37-54.

Breiman, L. 2001. Random forests. Machine learning 45 (1): 5-32.

Buckinx W., G. Verstraeten, and D. Van den Poel. 2007. Predicting customer loyalty using the internal transactional database. Expert Systems with Applications 32 (1): 125–134.

Burez J. D., and D. Van den Poel. 2009. Handling class imbalance in customer churn prediction. Expert Systems with Applications 36 (3): 4626–4636.

Cronbach, L. J. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16 (3): 297-334.

Deming, W. E. 2000. The New Economics for Industry. Cambridge: MIT Press. 

Glady, N., B. Baesens, and C. Croux. 2006. Modeling Customer Loyalty using Customer Lifetime Value. Open Access publications from Katholieke Universiteit Leuven.

Goel, S.,  J M. Hofman, L. Sébastien, D. M. Pennock, and D. J. Watts. 2010. Predicting Consumer Behavior with Web Search. PNAS 107 (41): 17486–17490.

Haen, J., D. Van den Poel, and D. Thorleuchter. 2013. Predicting customer profitability during acquisition: Finding the optimal combination of data source and data mining technique. Expert Systems with Applications 40 (6): 2007–2012.

Handzic, M., Ozlen, K., and Durmic, N. 2014. Improving customer relationship management through business intelligence. Journal of Information & Knowledge Management 13 (2): 1-11.

Handzic, O., and M. Durmic. 2014. Auditing knowledge management practices: model and application. Knowledge Management Research & Practice 6 (1): 90-99.

Haryani, S. and B. Motwani. 2015. Discriminant model for online viral marketing influencing consumers behavioural intention. Pacific Science Review B: Humanities and Social Sciences 1 (1): 49-56.

Hosseini S. M., A. Maleki, and M. R. Gholamian. 2010. Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications 37 (7): 5259–5264.

Keiningham T. l., and B. Cooil, L. Aksoy, T. W. Andreassen, and J. Weiner. 2007. The value of different customer satisfaction and loyalty metrics in predicting customer retention, recommendation, and share-of-wallet. Managing Service Quality 17 (4): 361-384.

Khan, I. 2012. Impact of Customers Satisfaction and Customers Retention on Customer Loyalty. International Journal of Scientific & Technology Research 1 (2): 106-110.

Khodakarami, F. M., and Y. E. Chan. 2014. An Investigation of Factors Affecting Marketing Information Systems’ Use. Journal of Marketing Development and Competitiveness 7 (2): 115-121.

Larivie`re, B., and D. Van den Poel. 2005. Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications 29 (2): 472–484.

Mahmood, F. 2013. Impact of Information Technology Usage by Banks on Customer Satisfaction in Banking Sector of Pakistan. Management and Administrative Sciences Review 2(2): 221-232.

Malmarugan, D. 2008. Strategic model for predicting customer’s intention to purchase apparel online. Innovative Marketing 4 (1): 29-36.

Oti, E. U., A. C. Adeyeye, and S. R. Abiobaragha. 2016. Multiple Regression of Students’ Performance Using forward Selection Procedure, Backward Elimination and Stepwise Procedure. International Journal of Innovative Research and Development 5 (12): 226-232.

Peters, M. D., B. Wieder, S. G. Sutton, and J. Wakefield. 2016. Business intelligence systems use in performance measurement capabilities: Implications for enhanced competitive advantage. International Journal of Accounting Information Systems 21: 1-17.

Rahimi, R. 2017. Customer relationship management (people, process and technology) and organisational culture in hotels. International Journal of Contemporary Hospitality Management 29 (5): 1380-1402.

Reimann, M., O. Schilke, and J. S. Thomas. 2010. Toward an understanding of industry commoditization: Its nature and role in evolving marketing competition. International Journal of Research in Marketing 27 (2): 188−197.

Rho J. J. 2004. Internet Customer Segmentation Using Web Log Data. Journal of Business & Economics Research 2 (11): 59-74.

Sadasivan, K., S. Rajakumar, and R. Raijnikanth. 2011. Role of Involvement and Loyalty in Predicting Buyer’s Purchase Intention towards Private Apparel Brand Extensions. International Journal of Innovation, Management and Technology 2 (6): 519-524.

Shaaban E., Y. Helmy, A. Khedr, and M. Nasr. 2014. A Proposed Churn Prediction Model.  International Journal of Engineering Research and Applications 2 (4): 2248-9622.

Sutheewasinnon, P., Z. Hoque, and R. O. Nyamori. 2016. Development of a performance management system in the Thailand public sector: Isomorphism and the role and strategies of institutional entrepreneurs. Critical Perspectives on Accounting 40: 26-44.

Ter Bogt, H., and S. Tillema. 2016. Accounting for trust and control: Public sector partnerships in the arts. Critical Perspectives on Accounting 37: 5-23.

Thorleuchter, D., D. Van den Poel, and A. Prinzie. 2012. Analyzing existing customer’s websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing. Expert Systems with Applications 39 (3): 2597–2605.

Uçaktürk, A., and M. Villard. 2013. The effects of management information and ERP systems on strategic knowledge management and decision-making. Procedia-Social and Behavioral Sciences 99:1035-1043.

Vijayalakshmi S., V. Mahalakshmi, and S. Magesh. 2013. Knowledge discovery from consumer behavior in electronic home appliances market in Chennai by using data mining techniques. African Journal of Business Management 7 (34): 3332- 3342.

Wang, H. F., and W. K. Hong. 2016. Managing customer profitability in a competitive market by continuous data mining. Industrial Marketing Management 35 (6): 715-723.

Wei C. P., and I. T. Chiu. 2002. Turning telecommunications call details to churn prediction: A data mining approach. Expert Systems with Applications 23 (2): 103–112.

Wei, C. P., and I. T. Chiu. 2002. Turning telecommunications call details to churn prediction: a data mining approach. Expert systems with applications 23 (2): 103-112.

Yang H. C., C. Liu, and L. Zhou. 2011. Predicting young Chinese consumer’s mobile viral attitudes, intents and behavior. Asia Pacific Journal of Marketing and Logistics 24 (1): 59-77.