پیشنهاد کاربران تلگرام بر اساس گراف عضویت و سنجش گروه‌ها با داشتن کاربرانی از جامعه هدف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه یزد، یزد، ایران.

2 استادیار، دانشکده مهندسی کامپیوتر، دانشگاه یزد، یزد، ایران.

10.22034/aimj.2021.138490

چکیده

تلگرام پیام‌رسانی مبتنی بر ابر است که بیش از 500 میلیون کاربر فعال ماهیانه دارد. از ویژگی‌های ارائه‌شده در این پیام‌رسان میتوان به ایجاد گروه، کانال، ربات و چت مخفی اشاره کرد که قابلیت‌های بیشتری از یک پیام‌رسان، در اختیار کاربران قرار داده است. تلگرام در ایران به‌عنوان شبکه اجتماعی استفاده می‌شود، اما تمامی ویژگی‌های یک شبکه اجتماعی همانند یافتن مجموعه‌ای از کاربران را ارائه نمی‌دهد. یافتن کاربران، برای بازاریابان به‌منظور پیدا کردن جامعه هدف بسیار مفید است. هدف این پژوهش، ارائه روشی برای یافتن کاربران در پیام‌رسان تلگرام است. در این مقاله، برای پیشنهاد کاربر، از گراف ارتباطی کاربران استفاده شده است. گراف ارتباطی، کاربران را از طریق گروه‌های مشترک به‌یکدیگر متصل می‌کند. رویکرد پیشنهادی با استفاده از گراف و متغیرهای عددی استخراج‌شده از سطح گروه‌های تلگرام، در دو بخش کمی و کیفی پنج پیشنهاد ارائه داده است. بخش کمی، گروه‌ها را بر اساس تعداد و درصد اشتراک با کاربران ورودی مدل‌سازی می‌کند. بخش کیفی نیز در ادامه بخش کمی ارائه شده است که گروه‌ها را بر اساس ویژگی تعداد مدیر در هر گروه رتبه‌بندی می‌کند. هر یک از پیشنهاد‌های بخش کمی و کیفی برای تکمیل و رفع نواقص سایر پیشنهاد‌ها ارائه شده‌اند و هر یک را می‌توان روشی جداگانه برای پیشنهاد کاربر در نظر گرفت. داده‌های این پژوهش شامل اطلاعاتی در حدود ‌70 میلیون کاربر و 700 هزار ‌گروه در تلگرام هستند. اطلاعات مد نظر، به‌وسیله سامانه ایده‌کاو و به‌صورت کاملاً قانونی توسط ابزاری که تلگرام در اختیار عموم قرار داده است، به ‌دست ‌آمده‌اند. در این مقاله، ارزیابی توسط گروه‌های محبوب تلگرام، با دو دسته اعتبارسنجی و آزمون، انجام شده است و نتایج آزمایش‌های تجربی تکرار نتایج و یکپارچگی روش پیشنهادی را نشان داده‌اند. روش پیشنهادی با هدف پوشش کل گراف در دو بخش کمی و کیفی، مؤثر بودن پیشنهادها و کاهش خطای پیش‌بینی را نسبت به سه پژوهش پیشین نشان داده است.

کلیدواژه‌ها

عنوان مقاله [English]

Telegram Users' Recommendation Based on the Membership Graph and Measuring Groups with Users from the Target Community

نویسندگان [English]

  • Davod Karimpour 1
  • Mohammad Ali Zare Chahooki 2

1 MSc. Student of Computer Engineering, Faculty of Computer Engineering, Yazd University, Yazd, Iran.

2 Assistant Prof., Faculty of Computer Engineering, Yazd University, Yazd, Iran.

چکیده [English]

Telegram is a cloud-based messenger with more than 500 million monthly active users. Telegram's features include the creation of supergroups, channels, bots, and secret chats that provide users with more capabilities than a messenger. Telegram is used as a social network in Iran; but it does not offer all the features of a social network, including finding a collection of users. Finding users is very useful for marketers to find the target audience. In this paper, a method in two parts is presented by users' communication graph. The first part is based on graphs and model groups based on the percentage of subscriptions with incoming users. The second section ranks the groups based on the number of managers. The data of this study includes information about 70 million users and 700,000 supergroups in Telegram. The information obtained has been crawled by the IdeKav System, and it is worth noting that this information has been obtained quite legally by the tool provided by Telegram to the public. In this article, the proposed method is evaluated based on popular groups in Telegram. Popular groups are groups in which a single topic is discussed. In this paper, the evaluation by popular Telegram groups has been done by two categories of validation and test, and the results of experimental experiments have shown the repetition of the results and the integrity of the proposed method. The proposed method with the aim of covering the whole graph in two parts has shown the effectiveness of the suggestions and reduction of forecasting error compared to the previous three studies.

کلیدواژه‌ها [English]

  • Find users
  • Social Networks
  • Telegram-based marketing
  • Find the target community of marketers
بیگدلو، مهدی؛ هادیان، ناصر (1397). تأثیر کارکردهای شبکه‌های اجتماعی بر سمت‌گیری‌های فرهنگ سیاسی کاربران دانشگاهی در ایران (مطالعه موردی: وایبر و تلگرام). جامعه‌شناسی سیاسی جهان اسلام، 6 (12)، 73- 104.
هاشمی، سید علی؛ زارع چاهوکی، محمدعلی (1397). توسعه‌ بازاریابی با توصیه‌گر گروه‌های پیام‌رسان‌ها. دوفصلنامه محاسبات و سامانه‌های توزیع‌شده، 1 (1)، 21- 30.
Al Momani, M. A. M. (2020). The Effectiveness of Social Media Application "Telegram Messenger" in Improving Students’ Reading Skills: A Case Study of EFL Learners at Ajloun University College/Jordan. Journal of Language Teaching and Research, 11(3), 373-378.
AlSuwaidan, L., & Ykhlef, M. (2018). Interest-based clustering approach for social networks. Arabian Journal for Science and Engineering, 43(2), 935-947.
Asnafi, A. R., Moradi, S., Dokhtesmati, M., & Naeini, M. P. (2017). Using mobile-based social networks by Iranian libraries: The case of telegram messenger. Library Philosophy and Practice, no. 1.
Ghaffari, M., Rakhshanderou, S., Mehrabi, Y., & Tizvir, A. (2017). Using social network of telegram for education on continued breastfeeding and complementary feeding of children among mothers: a successful experience from Iran. International Journal of Pediatrics, 5(7), 5275-5286.
Ghorbanzadeh, D., & Saeednia, H. R. (2018). Examining telegram users' motivations, technical characteristics, trust, attitudes, and positive word-of-mouth: evidence from Iran. International Journal of Electronic Marketing and Retailing, 9(4), 344-365.
Han, X., Wang, L., Farahbakhsh, R., Cuevas, A., Cuevas, R., Crespi, N. & He, L. (2016). CSD: A multi-user similarity metric for community recommendation in online social networks. Expert Systems with Applications, 53(1), 14-26.
Hashemi, A., & Zare Chahooki, M. A. (2019). Telegram group quality measurement by user behavior analysis. Social Network Analysis and Mining, 9(1), 33.
Hashemi, A., & Zare Chahooki, M. A. (2021). GroupRank: Ranking Online Social Groups Based on User Membership Records. Journal of AI and Data Mining, 9(1), 45-57.
Iqbal, M. (2021). Telegram Revenue and Usage Statistics (2020). Accessed 13 February 2021, URL: https://www.businessofapps.com/data/telegram-statistics.
Jiang, F., Leung, C. K., & Pazdor, A. G. (2016). Big data mining of social networks for friend recommendation. In 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 921-922.
Jibouni, A., Lotfi, D., El Marraki, M., & Hammouch, A. (2018). A novel parameter free approach for link prediction. In 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM), 1-6.
Karimpour, D., Zare Chahooki, M. A., & Hashemi, A. (2021). Telegram group recommendation based on users' migration. 26th International Computer Conference, Computer Society of Iran (CSICC), 1-6.
Karimpour, D., Zare Chahooki, M. A., & Hashemi, A. (2021). User recommendation based on Hybrid filtering in Telegram messenger. 2021 26th International Computer Conference, Computer Society of Iran (CSICC), 1-7.
Kumar, P., & Reddy, G. R. M. (2018). Friendship recommendation system using topological structure of social networks. In Progress in Intelligent Computing Techniques: Theory, Practice and Applications, 237-246.
Li, S., Song, X., Lu, H., Zeng, L., Shi, M., & Liu, F. (2020). Friend recommendation for cross marketing in online brand community based on intelligent attention allocation link prediction algorithm. Expert Systems with Applications, 139(1), 112839.
Lü, L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications, 390(6), 1150-1170.
Nobari, A. D., Reshadatmand, N., & Neshati, M. (2017). Analysis of Telegram, an instant messaging service. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2035-2038.
Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender systems handbook, 1-35.
Silva, N. B., Tsang, R., Cavalcanti, G. D. C., & Tsang, J. (2010). A graph-based friend recommendation system using genetic algorithm. In IEEE congress on evolutionary computation, 1-7.
دوره 7، شماره 1 - شماره پیاپی 12
بهار و تابستان 1400
صفحه 108-135
  • تاریخ دریافت: 10 اسفند 1399
  • تاریخ بازنگری: 23 مرداد 1400
  • تاریخ پذیرش: 28 شهریور 1400