پیشایندهای به‌کارگیری کلان‌‎داده برای نوآوری در فعالیت‌های بازاریابی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، بخش مدیریت بازرگانی و کسب‌وکار ، دانشکدگان فارابی، دانشگاه تهران، قم، ایران

2 دانشیار، بخش مدیریت صنعتی و فناوری، دانشکده مدیریت و حسابداری، دانشکدگان فارابی، دانشگاه تهران، قم، ایران

3 استادیار، گروه مدیریت فناوری اطلاعات، دانشکده مدیریت، دانشگاه تهران، تهران، ایران

4 استادیار، بخش مدیریت بازرگانی و کسب‌وکار، دانشکده مدیریت و حسابداری، دانشکدگان فارابی، دانشگاه تهران، قم، ایران

10.22034/aimj.2021.141511

چکیده

با بهره‌گیری از کلان‌داده، می‌توان از روندهای آینده بازار و ترجیحات مشتریان آگاهی دقیقی پیدا کرد و بر این اساس به نوآوری در فعالیت‌های بازاریابی اقدام کرد. اما، به‌منظور بهره‌‌گیری از این فناوری جدید در حوزه بازاریابی به عناصر و عواملی نیاز است. در این راستا، در ﭘﮋوﻫﺶ ﺣﺎﺿﺮ به شناسایی پیشایندهای لازم به‌منظور به‌کارگیری کلان‌داده در فعالیت‌های بازاریابی پرداخته شده است. این پژوهش به روش ﮐﯿﻔﯽ و ﺑﺎ اﺳﺘﺮاﺗﮋی تحلیل مضمون و بهره‌‌گیری از ﻣﺼﺎﺣﺒﻪ با متخصصان این حوزه، انجام‌ گرفته است. افراد مورد مطالعه ﭘﮋوﻫﺶ، 18 متخصص در زمینه داده و بازاریابی دیجیتال ﺑﻮدﻧﺪ ﮐﻪ ﺑﺎ روش نمونه‌گیری ﻫﺪﻓﻤﻨﺪ اﻧﺘﺨﺎب ﺷﺪﻧﺪ. با تحلیل مصاحبه‌ها، 6 مفهوم اصلی و 17 مفهوم فرعی شناسایی شدند. یافته‌ها ﻧﺸﺎن می‌دهند که پیشایندها شامل فرهنگ داده‌محور، مهارت‌های داده‌‌محور، ایجاد نظام‌های داده‌ای، تأمین پویای منابع، قابلیت‌های بازاریابی داده‌محور و درک و حمایت مدیریت ارشد هستند. نتایج این پژوهش می‌تواند به‌منظور ارزیابی آمادگی به‌کارگیری کلان‌داده در فعالیت‌های بازاریابی سازمان‌ها، در راستای توسعه و بهبود محصولات و خدمات و تجربه بهتر مشتریان آنها به‌کار رود.

کلیدواژه‌ها

عنوان مقاله [English]

Prerequisites for Using Big Data to Innovate in Marketing Activities

نویسندگان [English]

  • Maede Amini 1
  • Seyed Mohammadbagher Jafari 2
  • Ayoub Mohammadian 3
  • Asef Karimi 4

1 PhD Candidate, Department of Business Management, College of Farabi, University of Tehran, Qom, Iran

2 Associate Prof., Department of Industrial and Technology Management, Faculty of Management and Accounting, College of Farabi, University of Tehran, Qom, Iran

3 Assistant Prof., Department of Information Technology Management, Faculty of Management, University of Tehran, Tehran, Iran

4 Assistant Prof., Department of Business Management, Faculty of Management and Accounting, College of Farabi, University of Tehran, Qom, Iran

چکیده [English]

By using big data, companies can be accurately informed about future market trends and customer preferences. Accordingly, innovate in marketing activities. However, to take advantage of this new technology in marketing, elements and factors are needed. In this regard, the current study has identified the necessary Prerequisites for using big data to innovate in marketing activities. the methodology of current research is a qualitative method by getting interviews and using content analysis. The subjects were 18 experts in the fields of data science that were selected by purposeful sampling method. By analyzing the interviews, 6 main concepts and 17 sub-concepts were identified. The results showed that antecedents for using big data in marketing activities are data-driven culture, data-driven skills, data-driven systems creation, dynamic resources provision, data-driven marketing capabilities, and support and perception CEOs. The results of this study can be used to assess the readiness to use big data in the marketing activities of organizations to develop and improve products and services and better experience for their customers.

کلیدواژه‌ها [English]

  • Big Data
  • marketing analytics
  • Antecedents
  • content analysis
  • innovation in marketing
خنیفر، حسین؛ ناهید، مسلمی (1397). اصول و مبانی روش‌های پژوهش کیفی (جلد اول). تهران: نشر نگاه دانش.
محمدیان، ایوب؛ میرباقری، فاطمه؛ خانلری، امیر (1398). شناسایی و طبقه‌بندی کاربردهای نوآورانه اینترنت اشیا در بازاریابی دیجیتال. مدیریت بازرگانی، 11(4)، 719 – 741.
محمدیان، ایوب؛ میرباقری، فاطمه؛ قربانی، علیرضا (1399). «اولویت‎بندی کاربردهای اینترنت اشیا برای نوآوری در آمیخته بازاریابی با توجه به عوامل فناورانه، قانونی و بازار کشور ایران». پژوهشنامه مدیریت اجرایی، 2، 125- 148.
Akter, Sh., and Wamba, S.F. (2016). Big Data Analytics in E-Commerce: A Systematic Review and Agenda for Future Research. Electronic Markets 26 (2): 173–94. https://doi.org/10.1007/s12525-016-0219-0.
Amado, A., Cortez, P., Rita, P. and Moro, S. (2018). Research Trends on Big Data in Marketing: A Text Mining and Topic Modeling Based Literature Analysis. European Research on Management and Business Economics 24 (1): 1–7. https://doi.org/10.1016/j.iedeen.2017.06.002.
Ariker, M., Diaz, A., Moorman, Ch. and Westover, M. (2015). Quantifying the Impact of Marketing Analytics. Harvard Business Review, no. 5: 2015.
Bloem, J., Doorn, M., Duivestein, S., Manen, T. and Ommeren, E. (2013). Privacy, Technology and the Law: Big Data for Everyone through Good Design.
Branda, A. F., Lala, V. and Gopalakrishna, P. (2018). The Marketing Analytics Orientation (MAO) of Firms: Identifying Factors That Create Highly Analytical Marketing Practices. Journal of Marketing Analytics 6 (3): 84–94. https://doi.org/10.1057/s41270-018-0036-8.
Braun, V., and Clarke, V. (2006). Using Thematic Analysis in Psychology. Qualitative Research in Psychology, 3 (2): 77–101. https://doi.org/10.1191/1478088706qp063oa.
Cao, G., Duan, Y. and El Banna, A. (2019). A Dynamic Capability View of Marketing Analytics: Evidence from UK Firms. Industrial Marketing Management, 76, 72–83. https://doi.org/10.1016/j.indmarman.2018.08.002.
Chen, D. Q., Preston, D.S. and Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32 (4): 4–39. https://doi.org/10.1080/07421222.2015.1138364.
CMO-Survey (2017). Highlights and Insights. http://cmosurvey.org/files/2013/02/The_ CMO_Survey_Highlights_and_Insights_Feb-2013-Final2.pdf.
Cortez, R. M., and Johnston, W.J. (2017). The Future of B2B Marketing Theory: A Historical and Prospective Analysis. Industrial Marketing Management, 66, 90-102.
Creswell, J. W., and C. N. Poth. 2016. Qualitative Inquiry and Research Design: Choosing among Five Approaches. Sage publications. https://doi.org/10.1177/1524839915580941.
Creswell, J.W. (2001). 30 Essential Skills for the Qualitative Researcher. Sage Publication. http://gen.lib.rus.ec/book/index.php?md5=1460DC1170F2959EC9E3A500860296A2.
De Luca, L. M., Herhausen, D., Troilo, G. and Rossi, A. (2020). How and When Do Big Data Investments Pay off? The Role of Marketing Affordances and Service Innovation. Journal of the Academy of Marketing Science. https://doi.org/10.1007/s11747-020-00739-x.
Duan, Y., Cao, G. and Edwards, G.S. (2020). Understanding the Impact of Business Analytics on Innovation. European Journal of Operational Research 281 (3): 673–86. https://doi.org/10.1016/j.ejor.2018.06.021.
Erevelles, S., Fukawa, N.and Swayne, L. (2016). Big Data Consumer Analytics and the Transformation of Marketing. Journal of Business Research 69 (2): 897–904. https://doi.org/10.1016/j.jbusres.2015.07.001.
Ferraris, A., Mazzoleni, A., Devalle, A. and Couturier, J. (2019). Big Data Analytics Capabilities and Knowledge Management: Impact on Firm Performance. Management Decision, 57 (8): 1923–36. https://doi.org/10.1108/MD-07-2018-0825.
George, G., Haas, M.R. and Pentland, A. (2014). Big Data and Management. The Academy of Management Journal, 57 (1): 321–26.
Germann, F., Lilien, G.L. and Rangaswamy, A. (2013). Performance Implications of Deploying Marketing Analytics.” International Journal of Research in Marketing 30 (2): 114–28. https://doi.org/10.1016/j.ijresmar.2012.10.001.
Ghasemaghaei, M., Ebrahimi, S. and Hassanein, Kh. (2018). Data Analytics Competency for Improving Firm Decision Making Performance. Journal of Strategic Information Systems, 27 (1): 101–13. https://doi.org/10.1016/j.jsis.2017.10.001.
Gnizy, I. (2019). Big Data and Its Strategic Path to Value in International Firms. International Marketing Review 36 (3): 318–41. https://doi.org/10.1108/IMR-09-2018-0249.
Grossman, R.L., and Siegel, K.P. (2014). Organizational Models for Big Data and Analytics. Journal of Organization Design, 3 (1): 20–25. https://doi.org/10.7146/jod.9799.
Hanssens, D. M., and Pauwels, K.H. (2016). Demonstrating the Value of Marketing. Journal of Marketing, 80 (6): 173–90. https://doi.org/10.1509/jm.15.0417.
Johnson, D. S., Muzellec, L., Sihi, D. and Zahay, D. (2019). The Marketing Organization’s Journey to Become Data-Driven. Journal of Research in Interactive Marketing, 13 (2): 162–78. https://doi.org/10.1108/JRIM-12-2018-0157.
Maroufkhani, P., Wan Ismail, Kh.W., and Ghobakhloo, M. (2020). Big Data Analytics Adoption Model for Small and Medium Enterprises. Journal of Science and Technology Policy Management, 11 (2): 171–201. https://doi.org/10.1108/JSTPM-02-2020-0018.
McKinsey Company (2016). The Age of Analytics: Competing in a Data-Driven World. http://www.mckinsey.com/business-functions/mckinseyanalytics/%0Aour-insights/the-age-of-analytics-competing-in-a-data-driven-world.
Mikalef, P. and Krogstie, J. (2020). Examining the Interplay between Big Data Analytics and Contextual Factors in Driving Process Innovation Capabilities. European Journal of Information Systems, 29 (3): 260–87. https://doi.org/10.1080/0960085X.2020.1740618.
Mikalef, P., Boura, M., Lekakos, G. and Krogstie, J. (2019). Big Data Analytics Capabilities and Innovation: The Mediating Role of Dynamic Capabilities and Moderating Effect of the Environment. British Journal of Management, 30 (2): 272–98. https://doi.org/10.1111/1467-8551.12343.
Mikalef, P., Krogstie, J., Pappas, I.O. and Pavlou, P. (2020). Exploring the Relationship between Big Data Analytics Capability and Competitive Performance: The Mediating Roles of Dynamic and Operational Capabilities. Information and Management, 57 (2): 103169. https://doi.org/10.1016/j.im.2019.05.004.
Natter, M., Mild, A., Wagner, U. and Taudes, A. (2008). Planning New Tariffs at Tele.Ring: The Application and Impact of an Integrated Segmentation, Targeting, and Positioning Tool. Marketing Science, 27 (4): 600–609. https://doi.org/10.1287/mksc.1070.0307.
O’Neill, M. and Brabazon, A. (2019). Business Analytics Capability, Organisational Value and Competitive Advantage. Journal of Business Analytics 2 (2): 160–73. https://doi.org/10.1080/2573234X.2019.1649991.
Orlandi, B. L., Zardini, A. and Rossignoli, C. (2020). Organizational Technological Opportunism and Social Media: The Deployment of Social Media Analytics to Sense and Respond to Technological Discontinuities. Journal of Business Research, 112 (November 2019): 385–95. https://doi.org/10.1016/j.jbusres.2019.10.070.
Pepping, J. (2017). The Individual & Organizational Factors Influencing the Implementation of Data-Driven Marketing. University of Twente.
Russo, J.E., Schoemaker, P.J.H., Russo, J.E. and Schoemaker, P.J.H. (1989). Decision Traps: Ten Barriers to Brilliant Decision-Making and How to Overcome Them. New York: Doubleday/Currency.
Silk, A. & Urban, G. L. (1987). Pre-Test-Market Evaluation of New Packaged Goods: A Model and Measurement Methodology. Journal of Marketing Research, 15 (2): 171–91.
Sinha, P. and Zoltners, A.A. (2001). Sales-Force Decision Models: Insights from 25 Years of Implementation. Interfaces, 31, 8–44. https://doi.org/10.1287/inte.31.4.8.9675.
Sivarajah, U., Mustafa Kamal, M., Irani, Z. and Weerakkody, W. (2017). Critical Analysis of Big Data Challenges and Analytical Methods. Journal of Business Research, 70: 263–86. https://doi.org/10.1016/j.jbusres.2016.08.001.
Suoniemi, S., Meyer-Waarden, L. and Munzel, A., Zablah, A.R. and Straub, D. (2020). Big Data and Firm Performance: The Roles of Market-Directed Capabilities and Business Strategy. Information and Management 57 (7): 103365. https://doi.org/10.1016/j.im.2020.103365.
Van Trieu, H. (2017). Getting Value from Business Intelligence Systems: A Review and Research Agenda. Decision Support Systems. https://doi.org/10.1016/j.dss.2016.09.019.
Wamba, S.F., Gunasekaran, A., Akter, Sh., Ren, S.J.F., Dubey, R. and Childe, S.J. (2017). Big Data Analytics and Firm Performance: Effects of Dynamic Capabilities. Journal of Business Research, 70: 356–65. https://doi.org/10.1016/j.jbusres.2016.08.009.
Wedel, M., and Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80 (6): 97–121. https://doi.org/10.1509/jm.15.0413.
Xu, Z., Frankwick, G.L. and Ramirez, E. (2016). Effects of Big Data Analytics and Traditional Marketing Analytics on New Product Success: A Knowledge Fusion Perspective. Journal of Business Research 69 (5): 1562–66. https://doi.org/10.1016/j.jbusres.2015.10.017.
Yadegaridehkord, E., Nilashi, M. and Shuib, L. (2020). The Impact of Big Data on Firm Performance in Hotel Industry. Electronic Commerce Research and Applications, 2 (3).
Zeng, J. and Khan, Z. (2019). Value Creation through Big Data in Emerging Economies: The Role of Resource Orchestration and Entrepreneurial Orientation. Management Decision, 57 (8): 1818–38. https://doi.org/10.1108/MD-05-2018-0572.
دوره 7، شماره 1 - شماره پیاپی 12
بهار و تابستان 1400
صفحه 243-268
  • تاریخ دریافت: 23 مرداد 1400
  • تاریخ بازنگری: 26 مهر 1400
  • تاریخ پذیرش: 06 آذر 1400