تحلیل آینده‌نگر عملکرد تحصیلی دانش‌آموزان بر مبنای ابعاد شخصیت با یادگیری ماشین خودکار (Auto ML)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مدیریت فناوری، دانشکده مدیریت صنعتی و فناوری، دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران

2 دانشیار، گروه مدیریت فناوری اطلاعات، دانشکده مدیریت صنعتی، دانشگاه علامه طباطبائی، تهران، ایران

3 کارشناس ارشد، گروه مدیریت فناوری اطلاعات، دانشکده مدیریت صنعتی و فناوری، دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران

10.22034/aimj.2023.194441

چکیده

پیش‌بینی عملکرد دانش‌آموزان برای والدین و معلمان آن‌ها از اهمیت بسزایی برخوردار است. در سال‌های اخیر، برای ارزیابی داده‌های آموزشی و عوامل تأثیرگذار بر عملکرد تحصیلی، از تحلیل یادگیری استفاده شده است. عوامل متعددی از جمله ویژگی‌های فردی، خانوادگی، اجتماعی و محیطی بر این موضوع تأثیرگذار هستند. یکی از مهم‌ترین عوامل فردی، شخصیت است که تأثیر این عامل را بر عملکرد تحصیلی بررسی خواهیم کرد. برای این منظور، داده‌های پنج دوره از دانش‌آموزان مدرسه‌ای در منطقه 3 تهران را تحلیل می‌کنیم. پژوهش‌های انجام‌شده در این حوزه بیشتر به هم‌بستگی ابعاد مختلف پرداخته‌اند، اما هدف اصلی این پژوهش، پیش‌بینی عملکرد دانش‌آموزان به‌منظور شناسایی دانش‌آموزان در معرض افت تحصیلی است که با علم خانواده به این موضوع برای بهبود آنان اقدام کنند. متدولوژی استفاده‌شدهCRISP-DM  است. برای تحلیل، از تکنیک داده‌کاوی یادگیری ماشین خودکار (Auto ML) استفاده شده است. براساس معیار Accuracy، طبقه‌بندی در مقایسه با روش شبکه عصبی مصنوعی، با دقت بیشتری انجام شده است. طبق یافته‌های این پژوهش، بعد وظیفه‌شناسی در پیش‌بینی عملکرد دانش‌آموزان، بیشترین تأثیر و بعد روان‌رنجوری کمترین میزان تأثیر را داشته است.

کلیدواژه‌ها

عنوان مقاله [English]

Prospective Analysis of Students' Academic Performance based on Personality Dimensions with Automatic Machine Learning (Auto ML)

نویسندگان [English]

  • Babak Sohrabi 1
  • Iman Raeesi Vanani 2
  • Ali Norouzi 3

1 Prof., Department of IT, Faculty of Industrial Management and Technology, College of Management, University of Tehran, Tehran, Iran

2 Associate Prof., Department of IT, Faculty of Industrial Management, Allameh Tabataba'i University, Tehran, Iran

3 MSc., Department of IT, Faculty of Industrial Management and Technology, College of Management, University of Tehran, Tehran, Iran

چکیده [English]

Predicting students’ performance is important for their parents and their teachers. In recent years, learning analytics has been used to evaluate educational data and factors affecting academic performance. Numerous factors, including individual, family, social and environmental characteristics affect this issue. One of the most important individual factors is personality, which we will examine the impact of this factor on academic performance. For this purpose, we analyze the data of a school students in District One of Tehran. Researches in this field has focused on the correlation of different dimensions, but the main purpose of this study is predicting student performance in order to identify students at risk of academic failure, which with the knowledge of the family to improve They take action. The methodology used is CRISP-DM. The Auto ML data mining technique was used for analysis. According to the Accuracy criterion, the classification is more accurate than the artificial neural network method. According to the findings of this study, the conscientious dimension had the greatest effect and the neurotic dimension had the least effect on predicting students' performance.

کلیدواژه‌ها [English]

  • Learning Analytics
  • Personality
  • Academic Performance
  • Academic failure
عربی، پوریا؛ قشقایی، ریحانه و ربانی فرهودی، علی (1394). توسعه اقتصادی آموزش و پرورش با تأکید بر سند تحول بنیادین آموزش و پرورش ایران. ششمین کنفرانس بینالمللی اقتصاد، مدیریت و علوم مهندسی.
 Aleksandrowicz, J. W., Klasa, K., Sobański, J. A., & Stolarska, D. (2007). KON-2006-Neurotic Personality Questionnaire. Psychiatria polska, 41(6), 759- 778.
Allport, G. W. (1961). Pattern and growth in personality. Holt, Reinhart & Winston.
Anglim, J., Horwood, S., Smillie, L. D., Marrero, R. J., & Wood, J. K. (2020). Predicting psychological and subjective well-being from personality: A meta-analysis. Psychological bulletin, 146(4), 279.
Backmann, J., Weiss, M., Schippers, M. C., & Hoegl, M. (2019). Personality factors, student resiliency, and the moderating role of achievement values in study progress. Learning and Individual Differences, 72, 39-48.
Bashiri Haddadan, G., Mahmoodi, F., Rezapoor, Y., & Adib, Y. (2016). Describing the experience and perception of teachers and experts from education in multi-grade classes of primary schools in rural areas of Kalibar. Teaching and Learning Research, 12(2), 107-120.  
Briley, D.A. & Tucker-Drob, E.M. (2014). Genetic and environmental continuity in personality development: a meta-analysis. Psychological Bulletin, 140(5), 1303.
Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683-695.
Costa, L., Demers, L. M., Gouveia-Oliveira, A., Schaller, J., Costa, E. B., De Moura, M. C., & Lipton, A. (2002). Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. Journal of Clinical Oncology, 20(3), 850-856.
Dietz-Uhler, B. & Hurn, J. E. (2013). Using learning analytics to predict (and improve) student success: A faculty perspective. Journal of interactive online learning, 12(1), 17-26.
Elias, T. (2011). Learning analytics. Learning, 1-22.
Eysenck, H. J., & Eysenck, S. B. (2013). The biological basis of personality. In Personality Structure and Measurement (Psychology Revivals) (pp. 49-62). Routledge.
Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. Automated machine learning: Methods, systems, challenges, 3-33.
Furr, R. M., & Funder, D. C. (2004). Situational similarity and behavioral consistency: Subjective, objective, variable-centered, and person-centered approaches. Journal of Research in Personality, 38(5), 421-447.
Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68- 84.
Harris, J. R. (1995). Where is the child's environment? A group socialization theory of development. Psychological review, 102(3), 458.
Horstmann, K. T., & Ziegler, M. (2020). Assessing personality states: What to consider when constructing personality state measures. European Journal of Personality, 34(6), 1037- 1059.
Jalili, S., & Mall-Amiri, B. (2015). The difference between extrovert and introvert EFL teachers' classroom management. Theory and Practice in Language Studies, 5(4), 826.
Jeronimus, B. F., Riese, H., Sanderman, R., & Ormel, J. (2014). Mutual reinforcement between neuroticism and life experiences: a five-wave, 16-year study to test reciprocal causation. Journal of personality and social psychology, 107(4), 751.
Kawamoto, R., Ninomiya, D., Kasai, Y., Kusunoki, T., Ohtsuka, N., Kumagi, T., & Abe, M. (2016). Factors associated with the choice of general medicine as a career among Japanese medical students. Medical Education Online, 21(1), 29448.
Kweik, O. M. A., Hamid, M. A. A., Sheqlieh, S. O., Abu-Nasser, B. S., & Abu-Naser, S. S. (2020). Artificial Neural Network for Lung Cancer Detection. International Journal of Academic Engineering Research (IJAER),4(11).
Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for early prediction of at-risk students in a course using standards-based grading. Computers & Education, 103, 1-15.
Matthews, G. (2009). 23 Personality and performance: cognitive processes and models. The Cambridge handbook of personality psychology, 400.
Mayilvaganan, M., & Kalpanadevi, D. (2014, December). Comparison of classification techniques for predicting the performance of students academic environment. In 2014 International Conference on Communication and Network Technologies (pp. 113-118). IEEE.
McAdams, D. P., & Pals, J. L. (2006). A new Big Five: fundamental principles for an integrative science of personality. American psychologist, 61(3), 204.  
Miguéis, V. L., Freitas, A., Garcia, P. J., & Silva, A. (2018). Early segmentation of students according to their academic performance: A predictive modelling approach. Decision Support Systems, 115, 36-51.
Nix, R., & Zhang, J. (2017). Classification of Android apps and malware using deep neural networks. 2017 International joint conference on neural networks (IJCNN).
Park, N. (2004). The role of subjective well-being in positive youth development. The annals of the American academy of political and social science, 591(1), 25-39.
Ranjeeth, S., Latchoumi, T., & Paul, P. V. (2020). A survey on predictive models of learning analytics. Procedia Computer Science, 167, 37-46.  
Revelle, W.R. (2017). PSYCH: Procedures for personality and psychological research. Software.
Romero, C., Espejo, P. G., Zafra, A., Romero, J. R., & Ventura, S. (2013). Web usage mining for predicting final marks of students that use Moodle courses. Computer Applications in Engineering Education, 21(1), 135- 146.
Sadler-Smith, E. (2016). The role of intuition in entrepreneurship and business venturing decisions. European Journal of Work and Organizational Psychology, 25(2), 212-225.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
Strecht, P., Cruz, L., Soares, C., & Mendes-Moreira, J. (2015). A Comparative Study of Classification and Regression Algorithms for Modelling Students' Academic Performance. International Educational Data Mining Society.
Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013, August). Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 847-855).
Vandamme, J. P., Meskens, N., & Superby, J. F. (2007). Predicting academic performance by data mining methods. Education Economics, 15(4), 405.
Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining (Vol. 1, pp. 29-39).
Wong, B. T. M. (2017). Learning analytics in higher education: an analysis of case studies. Asian Association of Open Universities Journal, 12(1), 21-40.
Zeineddine, H., Braendle, U., & Farah, A. (2021). Enhancing prediction of student success: Automated machine learning approach. Computers & Electrical Engineering, 89, 106903.
  • تاریخ دریافت: 07 دی 1401
  • تاریخ بازنگری: 03 اسفند 1401
  • تاریخ پذیرش: 24 بهمن 1402