استقلال از مقیاس و قانون توان در سیستم های پیچیده نوآوری: بررسی رابطه استنادات و اندازه سیستم نانو فناوری ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت فناوری، دانشگاه علامه طباطبایی، تهران، ایران.

2 دانشیار دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.

3 استاد دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.

چکیده

هدف این پژوهش بررسی همبستگی میان اندازه سیستم نوآوری نانو فناوری ایران با استنادات آن، مبتنی بر قانون توان است. در این مطالعه تلاش شده است تا این مسئله بررسی گردد که آیا توزیع استنادات در این سیستم نوآوری از قانون توان تبعیت می­کند یا خیر و آیا می­توان بین متغیرهای اندازه و استنادات همبستگی مبتنی بر قانون توان را جستجو نمود؟ روش مورداستفاده در این پژوهش از نوع علم­سنجی و استفاده از رویکرد قانون توان است. داده­های این پژوهش از پایگاه وب. آف. ساینس استخراج‌شده و بر مبنای مقالات تولیدشده در سیستم نوآوری نانو فناوری ایران بوده است. به این منظور تعداد 4010 مدرک در چارچوب 145 سازمان مشارکت‌کننده در تولید مقالات استخراج گردید. به‌منظور بررسی وجود قانون توان و شناسایی پدیده استقلال از مقیاس در توزیع استنادات از R استفاده‌شده و تلاش شده است تا مقیاس­پذیری داده­ها و تبعیت سری داده­ها از قانون توان موردبررسی و تحلیل قرار بگیرد. نتایج این بررسی در وجه نخست نشان می­دهند که اندازه سیستم نوآوری (تعداد مقالات) و خروجی آن (استنادات) از قانون توان پیروی کرده و سیستم موردبررسی از مقیاس مستقل است. همچنین نتایج این بررسی نشان می­دهند که بین اندازه سیستم نوآوری و استنادات همبستگی مثبت وجود دارد و این همبستگی از قانون توان پیروی می­کند. بر این اساس می­توان ادعا نمود که در سیستم نوآوری نانو فناوری ایران پدیده ظهور یافتگی استقلال از مقیاس وجود داشته و این سیستم، یک سیستم پیچیده است. این پدیده یکی از ویژگی­های اصلی سیستم­های پیچیده بوده و می­تواند به سیاست­گذاری در سیستم­های پیچیده نوآوری کمک نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Relationship between citation-based impact and size of Iran’s Nano Innovation System: A Scale-independent Approach

نویسندگان [English]

  • Saeed Roshani 1
  • Jahanyar Bamdadsoofi 2
  • Soroush Ghazinoori 2
  • Maghsoud Amiri 3
1 Ph.D. Student of Technology Management, Allameh Tabataba’i University, Tehran, Iran.
2 Associate Professor, Allameh Tabataba’i University, Tehran, Iran.
3 Professor, Allameh Tabataba’i University, Tehran, Iran.
چکیده [English]

The aim of this article is to explore the power-law correlation between size of Iran Nano innovation system and their citation-based impact. For this reason, we analyze articles of Iran Nano innovation system based on Web of Knowledge database. The main questions for this study are: Does the distribution of citation on this innovation system follow the power-law distribution or not? And is there a power-law correlation between size of innovation system and citation-based impact? The method used in this research is a Scientometrics and use of power-law approach. The data of this research have been extracted from the web of knowledge databaseand based on the articles produced in Iran’s Nano innovation system. 4010 article were found and extracted into 145 unique organizations that participating in the producing of articles. R package was used In order to investigate the existence of the power-law correlation and identification of scale-invariance property in complex Nano innovation system of Iran. We use Monte-Carlo simulation and Pierson correlation test for analyzing power-law correlation between variables of this study. At the one side, results shows that size of complex innovation systems (number of articles) and their outputs(citation-based impact) follow power-law distribution and we can found scale invariance property. These properties are evidenced in the power law correlation between complex innovation systems’ citation-based impact and their size with a scaling exponent α ≈ 1.23. The results suggest citations to a complex innovation system tend to increase 2.34 times when the system doubles its size over time. At the other side, we found inverse Matthew effect between citations based impact and size of innovation system. Based on this results, it can be argued that Iran's Nanotechnology innovation system is a complex system and show the emergent property.

کلیدواژه‌ها [English]

  • complex innovation system
  • Matthew effect
  • Nano Technology
  • power-law
  • Scale-invariance

Archambault, É., Beauchesne, O. H., Côté, G., & Roberge, G. 2011, July. Scale-adjusted metrics of scientific collaboration. In Proceedings of the 13th Conference of the International Society for Scientometrics and Informetrics (ISSI 2011), Durban (pp. 78-88).

Barabasi, A. L., & Albert, A. 1999. Emergence of Scaling in Random Networks. Science, 286(5439), 509-512.

Baranger, M. 2001. Chaos, Complexity, and Entropy A physics talk for non-physicists Cambridge. Center for theoretical physics, laboratory for nuclear.

Bar-Yam, Y. 2016. Concepts: Power Law. New England Complex Systems    Institute. Retrieved, 21.

Clauset, A., Shalizi, C.R. and Newman, M.E., 2009. Power-law distributions in empirical data. SIAM review, 51(4), pp.661-703.

Cooke, P. 2012. Relatedness, transversality and public policy in innovative regions. European Planning Studies, 20(11), 1889-1907.

Dosi G .1988. The Nature of the Innovative Process. In: S L., editor. Technical Change and Economic Theory. London: Pinter Publishers. pp. 222.

Edquist, C., .2004. Systems of innovation: perspectives and challenges, In: J. Fagerberg, D.C. Mowery and R.R. Nelson (Eds.), The Oxford Handbook of Innovation, Oxford University Press.

Egghe, L. and Leydesdorff, L., 2009. The relation between Pearson's correlation coefficient r and Salton's cosine measure. Journal of the American Society for information Science and Technology, 60(5), pp.1027-1036.

Fischer, M. M., & Fröhlich, J. (Eds.). 2013. Knowledge, complexity and innovation systems. Springer Science & Business Media.

Frame, J. D., & Carpenter, M. P. 1979. International research collaboration. Social Studies of Science, 2, 481-497.

Gillespie, C. S. 2014. The poweRlaw package: Examples.

Kashani, E. S., & Roshani, S. 2019. Evolution of innovation system literature: Intellectual bases and emerging trends. Technological Forecasting and Social Change, 146, 68-80.

Katz, J. S. 1999. The self-similar science system. Research Policy, 28(5), 501–517.

Katz, J.S., 2000. Scale-independent indicators and research evaluation. Science and Public Policy, 27(1), pp.23-36.

Katz, J. S. 2005. Scale-independent bibliometric indicators. Measurement: Interdisciplinary Research and Perspectives, 3(1), 24-28.

Katz, J.S., 2006. Indicators for complex innovation systems. Research policy, 35(7), pp.893-909.

Katz, J. S. 2012. Scale-independent measures: Theory and practice. In 17th International Conference on Science and Technology Indicators. Sept (pp. 5-8).

Katz, J. S. 2016. What is a complex innovation system? PloS one, 11(6), e0156150.

Legendre, P., & Legendre, L. F. 2012. Numerical ecology (Vol. 24). Elsevier.

Lundvall B, Johnson B, Andersen ES, Dalum B. 2002. National systems of production, innovation and competence building. Research Policy 31: 213–231.

Lundvall B-Å 1992. National Systems of Innovation: Towards a Theory of Innovation and

Interactive Learning. Pinter, London

Maghrebi, M., Abbasi, A., Amiri, S., Monsefi, R., & Harati, A. 2011. A collective and abridged lexical query for delineation of nanotechnology publications. Scientometrics, 86(1), 15-25.

Merton, R. K. 1988. The Matthew Effect in Science, II: Cumulative Advantage and the Symbolism of Intellectual Property. Isis, 79(4), 606-623.

Mitchell, M. 2009. Complexity: A guided tour. Oxford University Press.

Milojevic, S. 2010. Modes of collaboration in modern science: Beyond power laws and preferential attachment.  Journal of the American Society for Information Science and Technology, 61, 1410–1423.

Mohammadi, M., Tabatabaeean, S. H., Elyasi, M., & Roshani, S. 2013. Formation of emerging technological innovation system in Iran; Case of nanotechnology sector. Journal of Science and Technology Policy, 5(4).

Newman, M. E. J. 2001. Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 64(1 Pt 2), 016131.

Palmberg, K., 2009. Beyond process management: Exploring organizational applications and complex adaptive systems (Doctoral dissertation, Luleå tekniska universitet).

 

Pyka, A., & Fagiolo, G., 2007. 29 Agent-based modelling: a methodology for neo-Schumpeterian economics'. Elgar companion to neo-schumpeterian economics, 467.

Ronda-Pupo, G. A. 2017. The citation-based impact of complex innovation systems scales with the size of the system. Scientometrics, 112(1), 141-151.

Ronda-Pupo, G. A., & Katz, J. S. 2016. The scaling relationship between citation-based performance and international collaboration of Cuban articles in natural sciences. Scientometrics, 107(3), 1423-1434.

Ronda‐Pupo, G. A., & Katz, J. S. 2017. The scaling relationship between citation‐based performance and coauthorship patterns in natural sciences. Journal of the Association for Information Science and Technology, 68(5), 1257-1265.

Roshani, S., Ghazinoori, S., & Tabatabeian, S. H. 2014. A co-Authorship Network Analysis of Iranian Researchers in Technology policy and managemen. Journal of Science and Technology Policy, 6(2).

Roshani, S., Soofi, J., Ghazinoori, S., Amiri, M. 2017. Discovering transformative scientific articles based on Sigma Index: Agent based modelling field of study in Social Sciences. Journal of Scientometrics, (article in press).

Zhao, S. X., & Ye, F. Y. 2013. Power‐law link strength distribution in paper co-citation networks. Journal of the Association for Information Science and Technology, 64(7), 1480-1489.